Interaction and transport of poly(L-lysine) dendrigrafts through liposomal and cellular membranes: the role of generation and surface functionalization.
نویسندگان
چکیده
Two generations of poly(l-lysine) dendrigrafts (DGLs) were studied with regard to their ability to interact with and translocate through liposomal and cellular membranes. Partial guanidinylation of the surface amino groups of the starting dendrigrafts afforded the guanidinylated derivatives whose membrane translocation properties were also assessed. Mixed liposomes, consisting of dihexadecyl phosphate, phosphatidylcholine, and cholesterol, were employed as model membranes, while A549 human lung carcinoma cells were used for cellular uptake studies. At high surface group/liposomal phosphate molar ratios and depending on the structure of the DGL, the interaction led to aggregation. Dendrigraft liposomal internalization was achieved, however, at low molar ratios. Thus translocation of the second generation dendrigrafts was rather limited at 25 degrees C, which, however, was enhanced when the bilayer was in the liquid-crystalline phase. In contrast, third-generation counterparts exhibited minor translocational ability. Furthermore, the introduction of a guanidinium group to dendrigrafts was found to enhance their transport through liposomal membranes. On the other hand, cellular uptake by A549 cells was monitored up to 3 h incubation time via fluorescence registration employing fluorescein-labeled dendrigrafts. The efficiency of dendrigraft internalization was enhanced by the presence of the guanidinium groups, while DGLs were preferentially localized in the nucleus and nuclear membrane, as revealed by fluorescence microscopy.
منابع مشابه
Synthesis and Functionalization of Gold Nanoparticles by Using of Poly Functional Amino Acids
Synthesis and characterization of two functionalized gold nanoparticles by using of two poly functional amino acids (L-Arginine and L-Aspartic acid) are reported. The gold nanoparticles were reduced by sodium citrate and functionalized with L-Arginine at the pH of 7 and 11 and L-Aspartic acid at the pH of 7. Transmission electron microscopy, UV-Vis spectroscopy, dynamic light scattering, zeta p...
متن کاملInteraction of cationic phosphorus dendrimers with lipid membranes
Large unilamellar liposomes and multilamellar vesicles consisting of DMPC interacted with cationic phosphorus-containing dendrimers CPDs G3 and G4. DSC and ζ -potential measurements have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary surface groups. Calorimetric studies indicate that the enthalpy of the transition of the lipids tha...
متن کاملArginine end-functionalized poly(L-lysine) dendrigrafts for the stabilization and controlled release of insulin.
Second generation biodegradable poly(l-lysine) dendrigrafts functionalized with 12-48 arginine end-groups interact, at physiological pH, with insulin affording dendrigraft/insulin complexes as established by dynamic light scattering, ζ-potential, circular dichroism and isothermal titration calorimetry. Binding occurs in two steps; at low dendrigraft/insulin molar ratios (< or = 0.07) interactio...
متن کاملInvestigating the Effect of Various Oxidizing Agents on the Surface Functionalization of Microporous Polypropylene Membranes
متن کامل
Interaction of cationic phosphorus dendrimers with lipid membranes
Large unilamellar liposomes and multilamellar vesicles consisting of DMPC interacted with cationic phosphorus-containing dendrimers CPDs G3 and G4. DSC and ζ -potential measurements have shown that liposomal-dendrimeric molecular recognition occurs due to the interaction between the complementary surface groups. Calorimetric studies indicate that the enthalpy of the transition of the lipids tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomacromolecules
دوره 8 10 شماره
صفحات -
تاریخ انتشار 2007